Visualization of Ca2+-induced phospholipid domains.

نویسندگان

  • D M Haverstick
  • M Glaser
چکیده

Large vesicles (5-15 microns) were formed by hydrating a dried lipid film containing phospholipids labeled with a fluorophore in one fatty acid chain. By using a fluorescence microscope attached to a low-light-intensity charge-coupled-device camera and digital-image processor, the vesicles were easily viewed and initially showed uniform fluorescence intensity across the surface. The fluorescence pattern of vesicles made with a fluorophore attached to phosphatidylcholine or phosphatidylethanolamine was unaffected by the presence of divalent cations such as Ca2+, Mg2+, Mn2+, Zn2+, or Cd2+. The fluorescence pattern of vesicles containing a fluorophore attached to the acidic phospholipids phosphatidylserine or phosphatidic acid showed distinct differences when treated with Ca2+ or Cd2+, although they were unaffected by Mg2+, Mn2+, or Zn2+. Treatment with 2.0 mM Ca2+ or Cd2+ resulted in the movement of the fluorophore to a single large patch on the surface of the vesicle. When vesicles were formed in the presence of 33 mol % cholesterol, patching was seen at a slightly lower Ca2+ concentration (1.0 mM). The possibility of interactions between Ca2+ and acidic phospholipids in plasma membranes was investigated by labeling erythrocytes and erythrocyte ghosts with fluorescent phosphatidic acid. When Ca2+ was added, multiple (five or six) small patches were seen per individual cell. The same pattern was observed when vesicles formed from whole lipid extracts of erythrocytes were labeled with fluorescent phosphatidic acid and then treated with Ca2+. This shows that the size and distribution of the Ca2+-induced domains depend on phospholipid composition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first C2 domain of synaptotagmin is required for exocytosis of insulin from pancreatic beta-cells: action of synaptotagmin at low micromolar calcium.

The Ca2+- and phospholipid-binding protein synaptotagmin is involved in neuroexocytosis. Its precise role and Ca2+-affinity in vivo are unclear. We investigated its putative function in insulin secretion which is maximally stimulated by 10 microM cytosolic free Ca2+. The well-characterized synaptotagmin isoforms I and II are present in pancreatic beta-cell lines RINm5F, INS-1 and HIT-T15 as sho...

متن کامل

Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1.

Synaptotagmin 1, a Ca2+ sensor for fast synaptic vesicle exocytosis, contains two C2 domains that form Ca2+-dependent complexes with phospholipids. To examine the functional importance of Ca2+ binding to the C2A domain of synaptotagmin 1, we studied two C2A domain mutations, D232N and D238N, using recombinant proteins and knock-in mice. Both mutations severely decreased intrinsic Ca2+ binding a...

متن کامل

The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I.

The synaptotagmin-like protein (Slp) family consists of an N-terminal Rab27-binding domain and C-terminal tandem C2 motifs, and although it has been suggested to regulate Rab27-dependent membrane trafficking, such as Ca2+-regulated granule exocytosis in T-lymphocytes [Kuroda, Fukuda, Ariga and Mikoshiba (2002) J. Biol. Chem. 277, 9212-9218], little is known about the Ca2+-binding property of th...

متن کامل

Ca2+ modulation of cis-unsaturated fatty acid-induced mutant protein kinase C activity: indication of inhibitory Ca2+-binding site in protein kinase C-alpha.

The C2 domain in protein kinase C (PKC) is homologous to equivalent domains in a number of important cytoplasmic proteins. Except for its implied function in Ca2+ and phospholipid binding, the precise role of this domain is not well understood. We examined the role of the C2 domain of PKC-alpha using a mutant enzyme in which 80% of this domain has been deleted. This mutant can be activated by p...

متن کامل

Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition.

Treatment with the omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 84 13  شماره 

صفحات  -

تاریخ انتشار 1987